Universality of Cutoff for the Ising Model
نویسنده
چکیده
On any locally-finite geometry, the stochastic Ising model is known to be contractive when the inverse-temperature β is small enough, via classical results of Dobrushin and of Holley in the 1970’s. By a general principle proposed by Peres, the dynamics is then expected to exhibit cutoff. However, so far cutoff for the Ising model has been confirmed mainly for lattices, heavily relying on amenability and log Sobolev inequalities. Without these, cutoff was unknown at any fixed β > 0, no matter how small, even in basic examples such as the Ising model on a binary tree or a random regular graph. We use the new framework of information percolation to show that, in any geometry, there is cutoff for the Ising model at high enough temperatures. Precisely, on any sequence of graphs with maximum degree d, the Ising model has cutoff provided that β < κ/d for some absolute constant κ (a result which, up to the value of κ, is best possible). Moreover, the cutoff location is established as the time at which the sum of squared magnetizations drops to 1, and the cutoff window is O(1), just as when β = 0. Finally, the mixing time from almost every initial state is not more than a factor of 1+εβ faster then the worst one (with εβ → 0 as β → 0), whereas the uniform starting state is at least 2− εβ times faster.
منابع مشابه
High order perturbation study of the frustrated quantum Ising chain
In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...
متن کاملبسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهمکنش نزدیکترین همسایهها
The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...
متن کاملIntroduction to Schramm-Loewner evolution and its application to critical systems
In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...
متن کاملUniversality and conformal invariance for the Ising model in domains with boundary
The partition function with boundary conditions for various two-dimensional Ising models is examined and previously unobserved properties of conformal invariance and universality are established numerically.
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014